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SUMMARY

The ISS (Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm (Araújo et al. (1994),Weglein et al. (1997) and
Weglein et al. (2003)) is the most effective algorithm today
for internal multiple removal. It is the only multi-dimensional
method that can predict the correct time and approximate am-
plitude for all internal multiples at once, without any subsur-
face information. When combined with an energy minimiza-
tion adaptive subtraction, the ISS internal-multiple attenuation
algorithm can effectively eliminate internal multiples when the
primaries and internal multiples are separated. However, under
many offshore and onshore circumstances where internal mul-
tiples are often proximal to or interfering with primaries, the
criteria of energy minimization adaptive subtraction can fail
(e.g., the energy can increase when a multiple is removed from
a destructively interfering primary and multiple). Therefore,
Weglein (2014) proposed a three-pronged strategy for provid-
ing an effective response to removing internal multiples with-
out damaging interfering primaries. Currently, there is no ca-
pability available in the petroleum industry that addresses that
type of serious and frequently occurring challenge. A major
component of the strategy is to develop an internal-multiple
elimination algorithm that can predict both the correct am-
plitude and correct time for all internal multiples. The ini-
tial idea to achieve an elimination algorithm is developed by
Weglein and Matson (1998) by removing attenuation factors
(the difference between the predicted internal multiples and
true internal multiples) using reflection data. There are early
discussions in Ramı́rez (2007). Based on the ISS attenuation
algorithm and the initial idea for elimination, Herrera and We-
glein (2012) formulated an ISS algorithm for a normal incident
wave on a 1D earth, that eliminate first-order internal multi-
ples generated by the shallowest reflector and further attenu-
ates first-order internal multiples from deeper reflectors. Zou
and Weglein (2014) then advanced and extended these initial
contributions for the pre-stack and for all first order internal
multiples generated at all reflectors. In this paper, we further
extend the 1-D elimination algorithm and provide the first ISS
multi-dimensional elimination method for all first order inter-
nal multiples.

INTRODUCTION

The ISS (Inverse-Scattering-Series) allows all seismic process-
ing objectives, e.g., free-surface-multiple removal and internal-
multiple removal to be achieved directly in terms of data, with-
out any need for or estimation of the earth’s properties. The
ISS internal-multiple attenuation algorithm is the only method
today that can predict the correct time and approximate and
well-understood amplitude for all first-order internal multiples
generated from all reflectors, at once, without any subsurface

information. If the multiple to be removed is isolated from
other events, then the energy minimization adaptive subtrac-
tion can fill the gap between the attenuation algorithm ampli-
tude prediction and the internal multiples plus, e.g., all prepro-
cessing factors that are outside the assumed physics of the sub-
surface and acquisition. However primary and multiple events
can often interfere with each other in both on-shore and off-
shore seismic data. In these cases, the criteria of energy mini-
mization adaptive subtraction may fail and completely remov-
ing internal multiples becomes more challenging and beyond
the current capability of the petroleum industry.

For dealing with this challenging problem, Weglein (2014)
proposed a three-pronged strategy including

1. Develop the ISS prerequisites for predicting the refer-
ence wave field and to produce de-ghosted data.

2. Develop internal-multiple elimination algorithms from
ISS.

3. Develop a replacement for the energy-minimization cri-
teria for adaptive subtraction.

To achieve the second part of the strategy, that is, to upgrade
the ISS internal-multiple attenuation algorithm to elimination
algorithm, the strengths and limitations of the ISS internal-
multiple attenuation algorithm are noted and reviewed. The
ISS internal-multiple attenuation algorithm always attenuates
all internal multiples from all reflectors at once, automatically
and without any subsurface information. That unique strength
always present and is independent of the circumstances and
complexity of the geology and the play. However, there are
two well-understood limitations of this ISS internal-multiple
attenuation algorithm

1. It may generate spurious events due to internal multi-
ples treated as sub-events.

2. It is an attenuation algorithm not an elimination algo-
rithm.

The first item is a shortcoming of the leading order term (the
term used to derive the current attenuation algorithm), when
taken in isolation, but is not an issue for the entire ISS internal-
multiple removal capability. It is anticipated by the ISS and
higher order ISS internal multiple terms exist to precisely re-
move that issue of spurious events prediction. When taken to-
gether with the higher order terms, the ISS internal multiple
removal algorithm no longer experiences spurious events pre-
diction. Ma et al. (2012) , H. Liang and Weglein (2012) and
Ma and Weglein (2014) provided those higher order terms for
spurious events removal.

In a similar way, there are higher order ISS internal multiple
terms that provide the elimination of internal multiples when
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taken together with the leading order attenuation term. The ini-
tial idea is provided by Weglein and Matson (1998) in which
the attenuation factor, which is a collection of extra transmis-
sion coefficients and is the difference between attenuation and
elimination, is systematically studied. Later there are furthur
discussions in Ramı́rez (2007). Several extensions are pro-
posed based on the initial idea. Herrera and Weglein (2012)
proposed an algorithm for internal multiple elimination for all
first order internal multiples generated at the first reflector.
Benefited from the previous work, Zou and Weglein (2014)
proposed an new algorithm that can eliminate all first order
internal multiples for all reflectors for a 1D earth. In this pa-
per, we further extend the previous elimination algorithm and
provide the first ISS multi-dimensional elimination method for
all first order internal multiples. The new elimination algo-
rithm retains the benefits of the attenuation algorithm, includ-
ing not requiring any subsurface information and unlike strip-
ping methods, removes all first-order internal multiples from
all subsurface reflectors at once.

THE ISS INTERNAL-MULTIPLE ATTENUATION AL-
GORITHM AND THE INITIAL IDEA FOR INTERNAL
MULTIPLE ELIMINATION

The ISS internal-multiple attenuation algorithm is first given
by Araújo et al. (1994) and Weglein et al. (1997). The 1D
normal incidence version of the algorithm is presented as fol-
lows (The 2D version is given in Araújo et al. (1994),Weglein
et al. (1997) and Weglein et al. (2003) and the 3D version is a
straightforward extension.),

b3(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′). (1)

Where b1(z) is the constant velocity Stolt migration of the data
of a 1D normal incidence spike plane wave. ε1 and ε2 are
two small positive numbers introduced to avoid self interac-
tions. bIM

3 (k) is the predicted internal multiples in the vertical
wavenumber domain. This algorithm can predict the correct
time and approximate amplitude of all first-order internal mul-
tiples at once without any subsurface information.

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The
ISS internal-multiple attenuation algorithm automatically uses
three primaries in the data to predict a first-order internal mul-
tiple. (Note that this algorithm is model type independent and
it takes account all possible combinations of primaries that can
predict internal multiples.) From this figure we can see, ev-
ery sub event on the left hand side experiences several phe-
nomena making its way down to the earth then back to the re-
ceiver. When compared with the internal multiple on the right
hand side, the events on the left hand side have extra trans-
mission coefficients as shown in red. Multiplying all those
extra transmission coefficients, we get the AF (attenuation fac-
tor) - T01T10 for this first-order internal multiple generated at

the shallowest reflector. And all first-order internal multiples
generated at the shallowest reflector have the same attenuation
factor.

Figure 2 shows the procedure of predicting a first-order inter-
nal multiple generated at the next shallowest reflector. In this
example, the attenuation factor is (T01T10)

2(T12T21).

Figure 1: an example of the attenuation factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

Figure 2: an example of the attenuation factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

The attenuation factor for predicting a multiple generated by
the ith reflector, AFj , is given by the following:

AFj =





T0,1T1,0 ( f or j = 1)∏ j−1

i=1
(T 2

i−1,iT
2

i,i−1)Tj, j−1Tj−1, j ( f or 1 < j < J)

(2)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model. The interfaces are
numbered starting with the shallowest location. The attenua-
tion factor is a collection of extra transmission coefficients and
is the difference between attenuation and elimination. Weglein
and Matson (1998) studied the attenuation factor and provide
the initial idea and algorithm to remove the attenuation factor
by reflection data to achieve the elimination.

As discussed in Weglein and Matson (1998), the attenuation
algorithm prediction contains the attenuation factor and in or-
der to develop an elimination algorithm, we should remove the
attenuation factor. However, the attenuation factor is expressed
using transmission coefficients. Since the data contains reflec-
tion coefficients, the idea is to use reflection coefficients to rep-
resent the transmission coefficient such that we can remove the
attenuation factor by the data (which contains reflection coef-
ficients) without any subsurface information. For example, to
remove AF1 in the prediction, we have

1
AF1

=
1

T0,1T1,0
=

1
1−R2

1
= 1+R2

1 +R4
1 + ... (3)
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where the first term 1 corresponds to the attenuation algorithm,
the term R2

1 corresponds to the first higher order term towards
elimination and so on. A detailed discussion can be found in
Weglein and Matson (1998) and Ramı́rez (2007).

PREVIOUS WORK: WILBERTH’S AND YANGLEI’S EX-
TENSIONS

Based on the ISS internal-multiple attenuation algorithm and
the initial idea for elimination, Herrera and Weglein (2012)
formulated an algorithm for internal multiple elimination for
all first order internal multiples generated at the first reflector.
The first term in this elimination algorithm is the current atten-
uator (equation (1)), which corresponds to the first term 1 in
equation (3). The second term in this elimination algorithm is
shown as follows (The complete algorithm is given in Herrera
and Weglein (2012)),

+∞∫

−∞

dzb1(z)e2ikz
z−ε∫

−∞

dz′F(z′)e−2ikz′
+∞∫

z′+ε

dz′′b1(z′′)e2ikz′′ (4)

Where F(z) is

F(z) =

+∞∫

−∞

d(2k)e−2ikz
+∞∫
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×
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z′−ε
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z′′+ε∫

z′′−ε

dz′′′b1(z′′′)e2ikz′′′ (5)

The purpose of F(z) in the middle integrand is to provide R2

term shown in equation (3) in order to remove the attenuation
factor.

Benefited from the initial idea and Wilberth’s work, Zou and
Weglein (2014) formulated an elimination algorithm that can
eliminate all first order internal multiples for all reflectors for
a 1D earth. Below shows the elimination algorithm, where
b1(k,z) is the water speed uncollapsed Stolt migration of the
data; bE(k,2q) is the elimination algorithm prediction in wavenum-
ber domain; F [b1(k,z)] and g(k,z) are two intermediate func-
tions.
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∫ ∞
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All the ISS internal multiple removal algorithms predict in-
ternal multiples at once, without requiring any subsurface in-
formation. For first -order internal-multiples generated at the
shallowest reflector, both extensions are able to eliminate. For
first -order internal-multiples generated at the deeper reflec-
tors, the Wilberth’s extension is still an attenuator and is ex-
pected to predict better amplitude than the current attenuator
while the Yanglei’s extension is an eliminator.

THE FIRST INVERSE-SCATTERING-SERIES INTER-
NAL MULTIPLE ELIMINATION METHOD FOR A MULTI-
DIMENSIONAL SUBSURFACE

The Inverse-Scattering-Series contains an internal-multiple elim-
ination sub-series. Since the internal multiple attenuation al-
gorithm is capable to predict the correct time and approxi-
mate amplitude for all internal multiples, if we can isolate all
terms that can predict the same time as the attenuation algo-
rithm by the initial elimination idea (removing the attenuation
factor by the reflection data) in the Inverse-Scattering-Series,
then adding all these terms together will give us an elimina-
tion algorithm. Since the Inverse-Scattering-Series is a multi-
D series, the elimination algorithm/terms identified is a multi-
D algorithm. Benefited from the previous work, we propose a
Inverse-Scattering-Series internal multiple elimination method
that can eliminate all first-order internal multiples for all re-
flectors for a multi–dimensional subsurface. Below shows a
2D version of a higher order term in the elimination algorithm.

bE(ks,kg,qg +qs) =

+∞∫

−∞

+∞∫

−∞

dk1dk2

+∞∫

−∞
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×
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−∞
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(9)
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g(k1,k2,z) =
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Similar to the extension in the previous work in Zou and We-
glein (2014) , F(k1,k2,z) and g(k1,k2,z) are two intermediate
functions. Substituting into equation (9) provides a higher or-
der term in the elimination sub-series.

Combining all of these kind of higher order terms provides the
elimination algorithm in a 2D earth. The elimination algorithm
for a 3D earth is a straightforward extension.The complete sub-
series is given in Zou et al. (2016).

CONCLUSION

The ISS internal multiple elimination algorithm is a part of
the three-pronged strategy which is a direct response to cur-
rent seismic processing and interpretation challenge when pri-
maries and internal multiples are proximal to and/or interfere
with each other in either on-shore and off-shore plays. This pa-
per extends and generalizes the earlier 1D ISS internal multiple
elimination method to provide an algorithm that eliminates all
first-order internal multiples in a multi-D earth. This elimina-
tion algorithm retains the stand-alone benefits of the ISS inter-
nal multiple attenuation algorithm that can predict all internal
multiples at once (in contrast to stripping methods that remove
multiples layer by layer and require subsurface information)
and requiring no subsurface information.
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